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Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of
non-Hodgkin lymphomas frequently associated with poor prognosis
and for which genetic mechanisms of transformation remain incom-
pletely understood. Using RNA sequencing and targeted sequencing,
here we identify a recurrent in-frame deletion (VAV1 Δ778–786) gen-
erated by a focal deletion-driven alternative splicing mechanism as
well as novel VAV1 gene fusions (VAV1-THAP4, VAV1-MYO1F, and
VAV1-S100A7) in PTCL. Mechanistically these genetic lesions result in
increased activation of VAV1 catalytic-dependent (MAPK, JNK) and
non–catalytic-dependent (nuclear factor of activated T cells, NFAT)
VAV1 effector pathways. These results support a driver oncogenic
role for VAV1 signaling in the pathogenesis of PTCL.
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Peripheral T-cell lymphomas (PTCLs) are malignant and highly
aggressive hematologic tumors arising from mature postthymic

T cells (1). The diagnosis of PTCL includes diverse lymphoma
subgroups, altogether accounting for about 15% of all non-Hodgkin
lymphomas (2, 3). Despite much effort in developing reliable di-
agnostic markers, the diagnosis of PTCLs is challenging, and 20 to
30% of cases are diagnosed as PTCL-NOS (not otherwise speci-
fied). This heterogeneous and poorly defined group constitutes one
of the most aggressive forms of non-Hodgkin lymphoma, in which
limited response to intensified chemotherapy and high relapse rates
result in a dismal 5-y overall survival rate of 20 to 30% (4, 5).
Moreover, a paucity of information on driver oncogenes activated
in PTCL-NOS hampers the development of targeted therapies in
this aggressive lymphoma subgroup.
The VAV1 protooncogene encodes a guanine nucleotide exchange

factor (GEF) and adaptor protein with crucial signaling roles in
protein tyrosine kinase-regulated pathways (6). Structurally, VAV1
contains a calponin homology domain and an acidic domain in the N
terminus followed by a GEF catalytic active core consisting of a cen-
tral Dbl homology domain, pleckstrin homology domain, and C1
domain (6). Finally, the C-terminal region of VAV1 contains three
Src homology domains in an SH3-SH2-SH3 arrangement (6). The
GEF activity of VAV1 stimulates the transition of RAC1 and
RHOA small GTPases from their inactive (GDP-bound) to the
active (GTP-bound) configuration (6–8). In addition, the adap-
tor function of VAV1 mediates activation of the nuclear factor of
activated T cells (NFAT) in synergy with signals from antigenic
receptors in lymphoid cells (6, 8–13). In basal conditions, un-
phosphorylated VAV1 adopts an inactive closed configuration in
which the N-terminal calponin homology and acidic domains and

the C-terminal SH3 (C-SH3) domain block access of small GTPases
to the catalytic core and limit the noncatalytic activities of the protein
(6, 14, 15). Activation of VAV1 by transmembrane and cytosolic
protein kinases reverses these intramolecular inhibitory interactions
by promoting an open active configuration associated with phos-
phorylation in the acidic, C1 finger, and C-SH3 domains (6, 14, 15).
VAV1 is specifically expressed in hematopoietic tissues, and

plays key roles in lymphocyte development and function (8).
VAV1 is essential for T-cell receptor (TCR)-mediated cytoskeletal
reorganization, cytokine secretion, proliferation, and survival (8,
12). Thus, Vav1-deficient mice show a partial block in thymic de-
velopment at the CD4− CD8− double-negative to CD4+ CD8+

double-positive transition, defective positive selection, and im-
paired negative selection, which altogether point to a major role
for VAV1 in TCR signaling (16, 17). Biochemically, mouse Vav1
knockout T cells fail to elicit TCR-induced intracellular Ca2+ flux
and to activate MAP/ERK pathway and NF-κB signaling (18–21).
Consistently, the function of mature T-cell populations is also
defective in the absence of Vav1, with reduced TCR-induced
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proliferation and cytokine secretion (8, 22, 23). Similarly, VAV1-
null human JURKAT T cells show impaired TCR-induced calcium
flux, IL-2 transcription, and NF-κB activation, as well as decreased
TCR-induced JNK and NFAT signaling (24).
Here we report the identification and functional character-

ization of recurrent activating mutations and gene fusions in
VAV1 in PTCL.

Results
Identification of VAV1 Mutations and Gene Fusions in PTCL. To
identify new genetic drivers responsible for T-cell transformation
and potential targets for therapy in PTCL, we performed a sys-
tematic analysis of genetic alterations using RNA-sequencing
(RNA-seq) data from a cohort of 154 PTCL samples, including
41 PTCL-NOS, 60 angioimmunoblastic T-cell lymphoma (AITL),
17 natural killer/T-cell lymphoma (NKTCL), and 36 anaplastic
large T-cell lymphoma (ALCL) tumors (25–27) (Dataset S1).
These analyses confirmed a high prevalence of RHOA, TET2,
IDH2, and DNMT3A mutations in AITL (25, 26, 28) and the re-
current presence of fusion transcripts involving the ALK1 gene,
including NPM1-ALK1, TRAF1-ALK, and TPM3-ALK, and
STAT3 activating mutations in ALCL (27) (SI Appendix, Fig. S1
and Dataset S2). However, the most notable finding of these
analyses was the identification of gene fusions and novel recurrent
mutations involving the VAV1 protooncogene. Specifically, we
identified three different fusion transcripts encoding proteins in
which the C-terminal SH3 domain of VAV1 is replaced by the
calycin-like domain of THAP4 (in two cases), the SH3 domain of
MYO1F, or the EF domains of S100A7 (Fig. 1, SI Appendix, Figs.
S1 and S2, and Dataset S3). Reverse-transcription PCR amplifi-
cation and DNA sequencing validated the expression of each of
these VAV1 chimeric mRNAs in all samples analyzed (Fig. 1). In
addition, we identified two PTCL cases harboring a novel in-
tragenic VAV1 in-frame deletion, r.2473_2499del, which results in
the loss of nine amino acids (p.Val778_Thr786del) in the linker
region between the SH2 and C-terminal SH3 domains of the
VAV1 protein (Fig. 2 and SI Appendix, Figs. S3 and S4).
To further explore the prevalence and mechanisms of VAV1

mutations in PTCL, we performed targeted genomic DNA se-
quencing of VAV1 in a panel of 126 PTCL samples. Genomic
DNA sequencing of the two index RNA-seq cases harboring the
r.2473_2499del mutation revealed the presence of focal genomic
deletions in VAV1 involving the 3′ end of intron 25 and extending
into exon 26 (g.81269_81294del and g.81275_81302del) (Figs. 2B
and 3A and SI Appendix, Fig. S4). In addition, we identified
additional three cases harboring similar focal genomic deletions
involving the VAV1 intron 25–exon 26 boundary (g.81275_81301del,
g.81279_81296indelA, and g.81279_81298del) and one additional
case with a mutation resulting in the loss of 19 nt at the 5′ end of
exon 26 but preserving the intron 25–exon 26 AG splice acceptor
sequence (g.81280_81298indelA) (Figs. 2B and 3A and SI Appendix,
Fig. S4). cDNA-sequencing analysis in three of our additional
mutated cases for which RNA was available, including case PTCL
CU44, in which the deletion spared the canonical exon 26 splice
acceptor site, revealed that in all cases these mutations resulted in
activation of a cryptic splice acceptor site in exon 26 and the
consequent expression of misspliced transcripts containing the
r.2473_2499del (p.Val778_Thr786del) VAV1 mutation (Fig. 2B).
Notably, analysis of VAV1 exon 26 sequences proximal to this
cryptic splice acceptor site uncovered the presence of an exonic
splicing silencer element (29), which is disrupted or completely
lost in all VAV1 intron 25–exon 26 indel mutated cases analyzed
(Fig. 3). Altogether, PTCL VAV1 intron 25–exon 26 deletions
activate a cryptic VAV1 exon 26 splice acceptor site by disrupting
the corresponding intron 25–exon 26 canonical splice acceptor
sequence (5/6 cases) and removing an exon 26 exonic splicing si-
lencer (6/6 cases). In addition to removing these splicing regula-
tory elements, these focal deletions reconfigure the architecture

of the intron 25–exon 26 boundary by placing the intron 25 poly-
pyrimidine tract immediately distal to the alternative exon 26 AG
splice acceptor site (6/6 cases) (Fig. 3 C and D). Additionally,
our mutation analyses also identified three nonrecurrent point
mutations resulting in amino acid substitutions in the Dbl homol-
ogy (p.His337Tyr), C1 finger (p.Glu556Asp), and C-terminal SH3
domains (p.Arg798Pro) of VAV1 (SI Appendix, Figs. S1 and S5 and
Datasets S2 and S4).

VAV1 Fusion Proteins Induce Increased VAV1 Signaling. Given the
prominent role of VAV1 in T-cell activation and to explore the
functional consequences of PTCL-associated VAV1 mutations
and gene fusions, we analyzed the effect of these genetic alter-
ations on lymphocyte signaling. Recent reports have demonstrated
that the C-terminal SH3 domain of VAV1 contributes to intra-
molecular inhibition of VAV protein family members (14). Con-
sidering that our fusions and intragenic deletion mutants
specifically affect the region containing the C-SH3 domain of the
protein, we used the VAV1 Δ835–845 deletion mutant, which
lacks the C-SH3 domain, as positive control in our experiments.
To avoid interference with endogenous VAV1, JURKAT cells
lacking endogenous expression of VAV1 protein (Jurkat J.VAV1)
were infected with lentiviral constructs for VAV1 Δ778–786 and
the VAV1-MYO1F, VAV1-S100A7, and VAV1-THAP4 fusions as
well as the empty vector, VAV1 wild type, and VAV1 Δ835–845 con-
trols. Analysis of signaling events downstream of VAV1 demonstrated

VAV1 

VAV1-THAP4
941CH Ac DH PH C1 SH3 SH2 nitrobindin 

VAV1-MYO1F
952CH Ac DH PH C1 SH3 SH2 SH3 

VAV1-S100A7
884CH Ac DH PH C1 SH3 SH2 EF1 EF2

A

B

VAV1 THAP4

AGAGAACCATCAGCAGGCCAGCAGAGCCCCCCAAGATGAACCCAGTG

AGAGAACCATCAGCAGGCCAGCAGGCTTTTTGAAAGCAAAGATGAGCAA

VAV1 S100A7

VAV1 MYO1F
AGAGAACCATCAGCAGGCCAGCAGAGCCTACGCGGAAGGGAATGGCC

845CH Ac DH PH C1 SH3 SH2 SH3

Fig. 1. VAV1 fusion genes in PTCL. (A) Schematic representation of the domain
structure of the VAV1 protein. (B) Schematic representation of the domain
structures of the VAV1-S100A7, VAV1-THAP4, and VAV1-MYO1F fusion proteins.
Ac, acidic domain; C1, C1 domain; recognition motif for diacylglycerol and
phorbol esters, atypical; CH, calponin homology domain; DH, DBL homology; EF,
pseudo-EF hand domain; nitrobindin, nitrobindin domain; PH, pleckstrin ho-
mology domain; SH2, Src homology 2 domain; SH3, Src homology 3 domain.
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increased phosphorylation in ERK1/2 but not in PLCγ1 in JURKAT
J.Vav1 cells expressing VAV1 Δ778–786, and the VAV1-MYO1F,
VAV1-S100A7, and VAV1-THAP4 fusions, compared with wild-type
VAV1 (Fig. 4A). Additionally, we also analyzed the impact of the
p.His337Tyr, p.Glu556Asp, and p.Arg798Pro missense mutations
identified in our study, as well as that of p.E157Lys, p.Lys404Arg,
p.Gln498Lys, and p.Met501Arg VAV1 missense mutations iden-
tified in adult T-cell lymphoma (ATL) (4), on the phosphorylation
and activation of signaling pathways downstream of VAV1 (SI
Appendix, Fig. S5). These analyses revealed weaker and variable
effects of these mutations, with only VAV1 p.Gln498Lys showing
clear increased ERK1/2 phosphorylation and modestly higher
levels of phospho-PLCγ1 (SI Appendix, Fig. S5).
Analysis of JNK signaling in AP1 reporter assays, a functional

readout of VAV1 catalytic-dependent functions downstream of
RAC1, showed marked increased JNK activation in JURKAT
cells expressing the VAV1-MYO1F, VAV1-S100A7, and VAV1-
THAP4 fusions (Fig. 4B). Notably, this effect was primarily in-
dependent of TCR stimulation with anti-CD3 supporting that
PTCL-associated VAV1 fusion proteins adopt a constitutively
active configuration. In contrast, expression of the VAV1 Δ778–786
mutant protein induced only minor increases in JNK activation

compared with wild-type VAV1, even after anti-CD3 stimulation
(Fig. 4B). Next, and to explore noncatalytic VAV1 activity, we
analyzed the effects of VAV1 Δ778–786 mutant and fusion proteins
in NFAT reporter assays in JURKAT cells (Fig. 4C). In these ex-
periments, expression of VAV1-MYO1F, VAV1-S100A7, and
VAV1-THAP4 fusions induced increased NFAT activity, which was
further increased upon anti-CD3 stimulation (Fig. 4C). In contrast,
VAV1 Δ778–786 expression induced NFAT responses similar
to those elicited by expression of wild-type VAV1 (Fig. 4C).
Consistently, VAV1-MYO1F, VAV1-S100A7, and VAV1-THAP4
fusions strongly increased transcription of CD40L and IL-2
NFAT target genes, in basal conditions and after stimulation
with anti-CD3 in JURKAT J.VAV1 cells, whereas expression of
VAV1 Δ778–786 resulted in only a modest increase in gene ex-
pression (Fig. 4D).

VAV1 Δ778–786 and VAV1 Fusions Induce an Open Active VAV1
Configuration. The inhibitory role of VAV1 C-terminal SH3 do-
main involves its folding over to the N-terminal catalytic and
pleckstrin homology domains, which occludes the access of VAV
effector factors to the catalytic GEF domain (14). Thus, we
postulated that the loss of the C-terminal SH3 domain in the

CH Ac DH PH C1 SH3 SH2 SH3 845VAV1 

778del VGSTKYFGTA

PTCL
CU44

PTCL
CU49

PTCL
29T

PTCL
SP747

genomic DNA cDNA

Exon 26Intron 25

Exon 26Intron 25

del(TGGGAAGCACAAAGTATTT) ins (A)

del(TCTCTCCACAGTGGGAAGCACAAAGT)

del(GTGGGAAGCACAAAGTAT) ins(A)

del(CACAGTGGGAAGCACAAAGTATTTTGG)

Exon 26Exon 25

del(TGGGAAGCACAAAGTATTTTGGCACAG)

Exon 26Exon 25

del(TGGGAAGCACAAAGTATTTTGGCACAG)

Exon 26Exon 25

del(TGGGAAGCACAAAGTATTTTGGCACAG)

Exon 26Exon 25

del(TGGGAAGCACAAAGTATTTTGGCACAG)

genomic DNA

PTCL
TP45

del(CACAGTGGGAAGCACAAAGTATTTTGGC)

Exon 26Intron 25

del(AGTGGGAAGCACAAAGTATTT)

Exon 26Intron 25

PTCL
BCN25

B

Exon 26Intron 25

Exon 26Intron 25

TCTCTCCACAGATGGCACAGCCAAAGCCCGCTATGACTTCTGCGCCC

TCTCTCCACAGCCAAAGCCCGCTATGACTTCTGCGCCCGAGACCG

TCTCTCCACAATTTGGCACAGCCAAAGCCCGCTATGACTTCTGCGCCC

CCTTTTCTCACTTCTGTTCATTTTGGCACAGCCAAAGCCCGCTATGA

TCTCTCACAGCCAAAGCCCGCTATGACTTCTGCGCCCGAGACCGA

TCTCTCCACATGGCACAGCCAAAGCCCGCTATGACTTCTGCGCCCG

GAGAACCATCAGCAGGCCAGCAGCCAAAGCCCGCTATGACTTCT

GAGAACCATCAGCAGGCCAGCAGCCAAAGCCCGCTATGACTTCT

GAGAACCATCAGCAGGCCAGCAGCCAAAGCCCGCTATGACTTCT

GAGAACCATCAGCAGGCCAGCAGCCAAAGCCCGCTATGACTTCT

Fig. 2. Recurrent VAV1 Δ778–786 mutation in PTCL.
(A) Schematic representation of the domain struc-
ture of the VAV1 protein indicating the location of
the VAV1 p.778delVGSTKYFGT (VAV1 Δ778–786)
mutation. Each red circle is indicative of a PTCL mu-
tant sample. (B) Genomic DNA and cDNA sequences
corresponding to the intron 25–exon 26 genomic
DNA and exon 25–exon 26 cDNA boundaries, re-
spectively, in PTCL samples harboring the VAV1
p.778delVGSTKYFGT (VAV1 Δ778–786) mutation.
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VAV1-MYO1F, VAV1-S100A7, and VAV1-THAP4 fusions
would result in VAV1 activation via loss of these inhibitory
intramolecular interactions. Moreover, we proposed that the re-
moval of nine amino acids proximal to the C-terminal SH3 do-
main in the VAV1 Δ778–786 mutant protein could also limit the
inhibitory role of this domain by favoring an open VAV1

conformation. To test this hypothesis, we analyzed the levels of
Tyr174 phosphorylation, a regulatory posttranslational modifica-
tion indicative of an active VAV1 open configuration (7, 15), in
VAV1 wild type, VAV1 Δ835–845, VAV1 Δ778–786, and the
VAV1-MYO1F, VAV1-S100A7, and VAV1-THAP4 fusions or
control empty vector. Consistent with the loss of the inhibitory
role of the VAV1 C-terminal SH3 domain, immunoprecipitation
of HA-tagged VAV1 proteins with anti-HA antibody in these cells,
followed by immunoblotting with an antibody recognizing phospho-
Y174, showed high levels of phosphorylation in VAV1-MYO1F,
VAV1-S100A7, and VAV1-THAP4 fusions (Fig. 4E). Similarly, we
also observed increased levels of VAV1 Y174 phosphorylation in
the VAV1 Δ778–786 mutant protein (Fig. 4E) compared with
VAV1 wild-type controls. These results support that the PTCL-
associated VAV1 Δ778–786 mutation and in particular the VAV1-
MYO1F, VAV1-S100A7, and VAV1-THAP4 fusion proteins can
adopt an open configuration even in the absence of TCR stimu-
lation and mechanistically implicate the loss or impairment of the
inhibitory role of the C-terminal SH3 domain of VAV1 in the
pathogenesis of PTCL (Fig. 4E). Similar results were also obtained
in HEK293T cells in the context of VAV1 signaling activated by
FYN kinase expression (SI Appendix, Fig. S6).

Discussion
Initially identified as a protooncogene isolated in a gene transfer
screen for oncogenes with the ability to transform NIH 3T3 fi-
broblasts (30), the oncogenic activity of the original VAV1 clone
resulted from an artificially generated N-terminal deletion driv-
ing increased VAV1 activation (31). A pathogenic role for the
VAV family of signaling factors in cancer has been proposed
primarily based on their deregulated expression in solid tumors
and hematological malignancies (32). In addition, recent geno-
mic profiling analyses of ATL have revealed the presence of
recurrent point mutations in VAV1 in this disease (33), and
VAV1 gene fusions have recently been implicated in one case of
ATL and more broadly in PTCL (34). VAV1mutations identified
in ATL result mostly in single-amino acid substitutions involving
the acidic, pleckstrin homology, C1 finger, and C-terminal SH3
domains of the VAV1 protein (33). In addition, both the VAV1
gene fusion found in ATL (VAV1-TRIP10) (33) and those
reported in two cases of PTCL-NOS (VAV1-MYO1F and
VAV1-GSS) (34) involve the loss of the C-terminal SH3 do-
mains of VAV1. The recurrent pattern of VAV1 mutations and
gene fusions found in PTCL (34) and ATL (33) support a gain-
of-function mechanism. Moreover, the identification here of
additional VAV1 genetic alterations in PTCL, including a novel
recurrent in-frame deletion resulting in the loss of amino acids
778–786 in the linker region between the SH2 and C-terminal
SH3 domains of VAV1, further supports a pathogenic role for
VAV1 signaling in T-cell transformation. However, constitutive
genetic loss of Vav1 is associated with the development of ag-
gressive T-cell lymphoblastic lymphomas in aged mice (35, 36),
probably as a result of deregulated oncogenic pathways activated
in response to defective Vav1 signaling (37).
Functional characterization of PTCL-associated VAV1 fusion

proteins revealed increased levels of VAV1 activation, implicat-
ing the loss of C-terminal SH3 domain-mediated VAV1 regulation
in PTCL transformation. In this context, it is worth noting that
an artificially generated VAV1 mutant protein devoid of the
C-terminal SH3 domain, VAV1 Δ835–845, shows increased VAV1
signaling (14). Moreover, the recurrent VAV1 Δ778–786 mutation
and PTCL- and ATL-associated VAV1 missense mutations ana-
lyzed here also behaved as a gain-of-function allele, eliciting in-
creased levels of VAV1 effector pathway activation. However, no
C-terminal protein-truncating mutations in VAV1 were identified
in our patient cohort, suggesting a role for the MYO1F, S100A7,
and THAP4 domains fused to VAV1 in the oncogenic activity of
VAV1-MYO1F, VAV1-S100A7, and VAV1-THAP4, respectively.
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Fig. 3. VAV1 intron 25–exon 26 deletion–inducedmissplicing and VAV1 Δ778–
786 expression. (A) Genomic DNA sequences for PTCLs with verified intron 25–
exon 26 indel mutations. Deleted genomic DNA sequences are indicated with
orange dotted lines. Inserted nucleotides are indicated in red. Intron 25 nu-
cleotides are shown in lowercase letters. Exon 26 nucleotides are indicated in
capital letters. (B) VAV1 exon 26 splicing sequencer analysis. ESE, exonic splicing
enhancer; ESS, exonic splicing silencer. P scores indicate the Z value for sequence
over/underrepresentation in internal noncoding exons vs. pseudo exons. I scores
indicate the Z value for sequence over/underrepresentation in internal non-
coding exons vs. 5′ UTRs of intronless genes. Underrepresented octamers are
assigned negative Z scores. Nine nucleotides corresponding to two overlapping
octamers, GTATTTAT and TATTTATG, with strong exonic splicing silencer scores
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(D) Schematic representation of a representative VAV1 intron 25–exon 26
mutation (g.81275_81301del) and the consequent missplicing-induced deletion
(r.2473_2499del) and protein product (p.Val778_Thr786del; VAV1 Δ835–845).

Abate et al. PNAS | January 24, 2017 | vol. 114 | no. 4 | 767

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 J
an

ua
ry

 1
, 2

02
2 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608839114/-/DCSupplemental/pnas.1608839114.sapp.pdf


www.manaraa.com

In VAV1-S100A7, the C-terminal SH3 domain of VAV1 is re-
placed by the full length of S100A7, a calcium-binding epidermal
protein with proposed antibacterial and chemoattractant roles
(38). More interestingly, the VAV1-MYO1F fusion replaces the
C-terminal SH3 domain of VAV1 by the also C-terminally located
SH3 domain of MYO1F, an actin-interacting motor protein (39).
Remarkably, a recent report identified an additional VAV1-MYO1F
fusion in a PTCL sample (34), which further supports a possible
role of the MYO1F SH3 domain in promoting the activity of the
VAV1-MYO1F oncoprotein. Finally, the VAV1-THAP4 fusion re-
places the C-terminal SH3 domain of VAV1 with the C-terminal
nitrobindin domain of THAP4 (40). The recurrent finding of the
VAV1-THAP4 fusion in two independent samples in our cohort
supports that, in addition to removing the C-terminal SH3 domain
on VAV1, the incorporation of the β-barrel heme-Fe(III)–binding
nitrobindin domain of THPA4 may play an active role in the ac-
tivity of the VAV1-THAP4 oncoprotein. Animal models with se-
lective expression of VAV1mutations and gene fusions will facilitate
the analysis of the specific oncogenic roles and mechanisms of these
genetic alterations in T-cell transformation.
The apparent predominance of VAV1 point mutations in ATL

compared with the more frequent occurrence of gene fusions
and focal indel mutations in PTCL-NOS may be reflecting dif-
ferent mutagenic mechanisms or, alternatively, context-relevant
specific functions of the resulting VAV1 oncoproteins in these
diseases. Of note, the VAV1 Δ778–786 mutation involves a
unique mechanism that couples genomic disruption of the VAV1
intron 25–exon 26 boundary with a new splicing event triggered
by the coordinated loss of an intraexonic splice silencer in exon
26 and the disruption of the canonical AG intron 25–exon 26
splice acceptor site. Somatic mutations involving splicing sites
are a common mechanism of tumor suppressor gene inactivation
in cancer, where disruption of splicing donor and acceptor site
sequences frequently results in intron retention or exon skipping
events and expression of aberrant transcripts containing pre-
mature stop codons (41). However, missplicing mutations can
also result in oncogene activation. Thus, splicing site mutations
in the MET oncogene promote exon 14 skipping and consequent
expression of mutant oncogenic forms of MET with increased
stability and prolonged signaling upon HGF stimulation (42).
Similarly, mutations driving missplicing of the distal coding region
of NOTCH1 into the 3′ UTR of this gene result in expression of
C-terminally truncated forms of NOTCH1 with increased stability
and prolonged signaling in chronic lymphocytic leukemia (43). In
the case of VAV1 Δ778–786, an in-frame missplicing of exon 25
into a cryptic intraexonic splice acceptor motif in exon 26 gener-
ates mRNAs with an in-frame deletion and the expression of a
gain-of-function VAV1 oncoprotein. These findings call for careful
interpretation of the functional consequences of cancer-associated
splice site mutations in genomic studies.
In all, our identification of recurrent activating events affect-

ing VAV1 in PTCL-NOS and AITL supports an important driver
role for druggable effector signaling pathways downstream of
VAV1 in T-cell transformation. These results warrant the com-
prehensive evaluation of the prevalence and clinical impact of
VAV1 genetic alterations on extended cohorts of homogeneously
treated PTCL patients.

Materials and Methods
DNA and RNA samples from PTCL biopsies were obtained with informed
consent in a multiinstitutional setting. Studies were conducted under the su-
pervision of theColumbiaUniversityMedical Center Institutional ReviewBoard.

Genomic Analyses. Mutational analysis of VAV1 was performed by targeted
resequencing using microfluidics PCR (Access Array System; Fluidigm) followed
by sequencing of amplicon libraries in a MiSeq instrument (Illumina). We
identified variants that differed from the reference genome using the SAVI
algorithm (statistical algorithm for variant identification) based on coverage
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Fig. 4. VAV1 fusions and the VAV1 Δ778–786 mutation induce increased
VAV1 signaling in T cells. (A) Analysis of ERK1/2 and PLCγ1 phosphorylation in
J.VAV1 cells upon expression of VAV1 fusion proteins or the VAV1 Δ778–786 in-
tragenic deletion mutant. The VAV1 Δ835–845 C-terminal SH3 domain deletion
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analyzing JNK (B) and NFAT activity (C) in JURKAT cells expressing wild-type,
mutant, or fusion VAV1 proteins in basal conditions and upon stimulation with
anti-CD3. A.U., arbitrary units. (D) Quantitative RT-PCR analysis of CD40L and IL2
NFAT target genes in JURKAT cells expressing wild-type, mutant, or fusion VAV1
proteins in basal conditions and upon stimulation with anti-CD3. (E) Immuno-
precipitation/Western blot analysis of VAV1 Tyr174 phosphorylation in J.VAV1 cells
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activated phosphorylation of VAV1 mutants and fusion proteins compared with
wild-type control. Bar graphs in B–D show mean values, and error bars represent
the SD. Values are indicative of results in triplicate samples in a representative
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expressing cells; #P < 0.05 relative to stimulated wild-type VAV1-expressing cells.
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depth and frequency (44). Candidate variants were independently validated
by targeted deep sequencing. We analyzed Illumina HiSeq paired-end RNA-
seq data from 154 PTCL samples and identified variants using GATK Hap-
lotypeCaller (45) and Bcftools v1.2 (46) with standard parameters, and gene
fusions using the ChimeraScan algorithm (47) and the Pegasus pipeline (48).

In Vitro Studies. We performed Western blot detection using standard pro-
cedures with the following antibodies: HA (Roche; 11867423001; 1:500), Vav1
phospho-Y174 (Abcam; ab76225; 1:1,000), Vav1 DH domain (49) (1:10,000 di-
lution), GAPDH (Cell Signaling Technology; 5174; 1:5,000), ERK (Santa Cruz
Biotechnology; SC-271270; 1:250), phospho-p44/p42 (Cell Signaling Technolo-
gies; 4377; 1:1,000), PLC gamma1 (E-12) (Santa Cruz Biotechnology; SC-7290;
1:250), phospho-PLC gamma1 (Tyr783) (Cell Signaling Technologies; 2821;
1:1,000), and α-tubulin (Calbiochem; CP06; 1:2,000). We ran immunoprecipi-
tation analyses on cleared cell lysates using EZview Red Anti-HA Affinity Gel
(Sigma; E6779) and analyzed them by SDS/PAGE and immunoblotting.

For NFAT and JNK activation assays, we coelectroporated JURKAT cells
with JUN (pFR-Luc, pFA2-c-Jun) or NFAT (pNFAT-luc, pRL-SV40) luciferase
reporter vectors together with VAV1 wild type or mutant expression con-
structs plus a Renilla luciferase internal normalization control.

We induced TCR stimulation with antibodies against human CD3 (Cal-
biochem; 217570; UCHT1 clone) and determined luciferase activity with the
Dual-Luciferase Assay System (Promega).

Statistical Analyses.Analyses of significance were performed using Student’s t
test assuming equal variance. Continuous biological variables were assumed
to follow a normal distribution. A P value of <0.05 was considered to indi-
cate statistical significance.

Detailed information regarding the reagent assembly and assay conditions
can be found in SI Appendix, Materials and Methods.

ACKNOWLEDGMENTS. This work was supported by National Cancer Insti-
tute R01 CA197945-01 (to T.P.), Leukemia & Lymphoma Society (LLS) Awards
TRP-6507-17 (to T.P.) and TRP-6163-12 (to A.A.F.), a Herbert Irving Compre-
hensive Cancer Center interprogrammatic pilot project grant (to A.A.F. and
R.R.), and Grant 10007 from the Italian Association for Cancer Research
(AIRC) (to S.P.). O.A.B. was supported by Institut National du Cancer (INCa),
2013-1-PL BIO-09, INCa-DGOS-INSERM 6043, equipe labellisée Ligue Natio-
nale Contre le Cancer (LNCC), and INCa-DGOS-INSERM 6043. X.R.B.’s work
was supported by grants from the Spanish Ministry of Economy and Com-
petitiveness (RD12/0036/0002, SAF2012-31371, and SAF2015-64556-R), World-
wide Cancer Research (14-1248), and Ramón Areces Foundation. A.C.d.S.-A.
was supported by a Lady Tata Memorial Trust fellowship and an LLS Special
Fellowship Award. S.Z. was supported by a TL1 personalized medicine fellow-
ship (5TL1TR000082). L.C. was funded by a postdoctoral grant from Institut
Multi Organismes Cancer and INCa. M.-Y.K. was funded by an LLS post-
doctoral fellowship.

1. de Leval L, Gaulard P (2011) Pathology and biology of peripheral T-cell lymphomas.
Histopathology 58(1):49–68.

2. Rüdiger T, Müller-Hermelink HK (2002) [WHO-classification of malignant lymphomas].
Radiologe 42(12):936–942. German.

3. Armitage JO (2015) The aggressive peripheral T-cell lymphomas: 2015. Am J Hematol
90(7):665–673.

4. Savage KJ, Ferreri AJ, Zinzani PL, Pileri SA (2011) Peripheral T-cell lymphoma—Not
otherwise specified. Crit Rev Oncol Hematol 79(3):321–329.

5. Federico M, et al. (2013) Clinicopathologic characteristics of angioimmunoblastic
T-cell lymphoma: Analysis of the International Peripheral T-Cell Lymphoma Project.
J Clin Oncol 31(2):240–246.

6. Bustelo XR (2014) Vav family exchange factors: An integrated regulatory and func-
tional view. Small GTPases 5(2):9.

7. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR (1997) Phosphotyrosine-
dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene prod-
uct. Nature 385(6612):169–172.

8. Tybulewicz VL (2005) Vav-family proteins in T-cell signalling. Curr Opin Immunol
17(3):267–274.

9. Wu J, Katzav S, Weiss A (1995) A functional T-cell receptor signaling pathway is re-
quired for p95vav activity. Mol Cell Biol 15(8):4337–4346.

10. Kuhne MR, Ku G, Weiss A (2000) A guanine nucleotide exchange factor-independent
function of Vav1 in transcriptional activation. J Biol Chem 275(3):2185–2190.

11. Zhou Z, et al. (2007) The calponin homology domain of Vav1 associates with cal-
modulin and is prerequisite to T cell antigen receptor-induced calcium release in
Jurkat T lymphocytes. J Biol Chem 282(32):23737–23744.

12. Saveliev A, et al. (2009) Function of the nucleotide exchange activity of Vav1 in T cell
development and activation. Sci Signal 2(101):ra83.

13. Reynolds LF, et al. (2002) Vav1 transduces T cell receptor signals to the activation
of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent
pathways. J Exp Med 195(9):1103–1114.

14. Barreira M, et al. (2014) The C-terminal SH3 domain contributes to the intramolecular
inhibition of Vav family proteins. Sci Signal 7(321):ra35.

15. Yu B, et al. (2010) Structural and energetic mechanisms of cooperative autoinhibition
and activation of Vav1. Cell 140(2):246–256.

16. Turner M, et al. (1997) A requirement for the Rho-family GTP exchange factor Vav in
positive and negative selection of thymocytes. Immunity 7(4):451–460.

17. Kong YY, et al. (1998) Vav regulates peptide-specific apoptosis in thymocytes. J Exp
Med 188(11):2099–2111.

18. Fischer KD, et al. (1998) Vav is a regulator of cytoskeletal reorganization mediated by
the T-cell receptor. Curr Biol 8(10):554–562.

19. Costello PS, et al. (1999) The Rho-family GTP exchange factor Vav is a critical trans-
ducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc
Natl Acad Sci USA 96(6):3035–3040.

20. Holsinger LJ, et al. (1998) Defects in actin-cap formation in Vav-deficient mice im-
plicate an actin requirement for lymphocyte signal transduction. Curr Biol 8(10):
563–572.

21. Reynolds LF, et al. (2004) Vav1 transduces T cell receptor signals to the activation of
the Ras/ERK pathway via LAT, Sos, and RasGRP1. J Biol Chem 279(18):18239–18246.

22. Tarakhovsky A, et al. (1995) Defective antigen receptor-mediated proliferation of B
and T cells in the absence of Vav. Nature 374(6521):467–470.

23. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W (1995) Defective signalling through
the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene.
Nature 374(6521):470–473.

24. Cao Y, et al. (2002) Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell
line. EMBO J 21(18):4809–4819.

25. Palomero T, et al. (2014) Recurrent mutations in epigenetic regulators, RHOA and
FYN kinase in peripheral T cell lymphomas. Nat Genet 46(2):166–170.

26. Yoo HY, et al. (2014) A recurrent inactivating mutation in RHOA GTPase in an-
gioimmunoblastic T cell lymphoma. Nat Genet 46(4):371–375.

27. Crescenzo R, et al.; European T-Cell Lymphoma Study Group, T-Cell Project: Pro-
spective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC
5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malig-
nancies” (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3
activation in anaplastic large cell lymphoma. Cancer Cell 27(4):516–532.

28. Sakata-Yanagimoto M, et al. (2014) Somatic RHOA mutation in angioimmunoblastic
T cell lymphoma. Nat Genet 46(2):171–175.

29. Fairbrother WG, Chasin LA (2000) Human genomic sequences that inhibit splicing.
Mol Cell Biol 20(18):6816–6825.

30. Katzav S, Martin-Zanca D, Barbacid M (1989) vav, a novel human oncogene derived
from a locus ubiquitously expressed in hematopoietic cells. EMBO J 8(8):2283–2290.

31. Katzav S, Cleveland JL, Heslop HE, Pulido D (1991) Loss of the amino-terminal helix-
loop-helix domain of the vav proto-oncogene activates its transforming potential.
Mol Cell Biol 11(4):1912–1920.

32. Katzav S (2015) Vav1: A Dr. Jekyll and Mr. Hyde protein—Good for the hematopoietic
system, bad for cancer. Oncotarget 6(30):28731–28742.

33. Kataoka K, et al. (2015) Integrated molecular analysis of adult T cell leukemia/lym-
phoma. Nat Genet 47(11):1304–1315.

34. Boddicker RL, et al. (2016) Integrated mate-pair and RNA sequencing identifies novel,
targetable gene fusions in peripheral T-cell lymphoma. Blood 128(9):1234–1245.

35. Dumont C, et al. (2009) Rac GTPases play critical roles in early T-cell development.
Blood 113(17):3990–3998.

36. Ruiz S, Santos E, Bustelo XR (2009) The use of knockout mice reveals a synergistic role
of the Vav1 and Rasgrf2 gene deficiencies in lymphomagenesis and metastasis. PLoS
One 4(12):e8229.

37. Oberley MJ, Wang DS, Yang DT (2012) Vav1 in hematologic neoplasms, a mini review.
Am J Blood Res 2(1):1–8.

38. Eckert RL, Lee KC (2006) S100A7 (psoriasin): A story of mice and men. J Invest
Dermatol 126(7):1442–1444.

39. Crozet F, et al. (1997) Cloning of the genes encoding two murine and human cochlear
unconventional type I myosins. Genomics 40(2):332–341.

40. Bianchetti CM, Blouin GC, Bitto E, Olson JS, Phillips GN, Jr (2010) The structure and NO
binding properties of the nitrophorin-like heme-binding protein from Arabidopsis
thaliana gene locus At1g79260.1. Proteins 78(4):917–931.

41. Diederichs S, et al. (2016) The dark matter of the cancer genome: Aberrations in
regulatory elements, untranslated regions, splice sites, non-coding RNA and synony-
mous mutations. EMBO Mol Med 8(5):442–457.

42. Kong-Beltran M, et al. (2006) Somatic mutations lead to an oncogenic deletion of Met
in lung cancer. Cancer Res 66(1):283–289.

43. Puente XS, et al. (2015) Non-coding recurrent mutations in chronic lymphocytic leu-
kaemia. Nature 526(7574):519–524.

44. Trifonov V, Pasqualucci L, Tiacci E, Falini B, Rabadan R (2013) SAVI: A statistical al-
gorithm for variant frequency identification. BMC Syst Biol 7(Suppl 2):S2.

45. McKenna A, et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.

46. Narasimhan V, et al. (2016) BCFtools/RoH: a hidden Markov model approach for de-
tecting autozygosity from next-generation sequencing data. Bioinformatics 32(11):
1749–1751.

47. Iyer MK, Chinnaiyan AM, Maher CA (2011) ChimeraScan: A tool for identifying chi-
meric transcription in sequencing data. Bioinformatics 27(20):2903–2904.

48. Abate F, et al. (2014) Pegasus: A comprehensive annotation and prediction tool for
detection of driver gene fusions in cancer. BMC Syst Biol 8:97.

49. Zugaza JL, et al. (2002) Structural determinants for the biological activity of Vav
proteins. J Biol Chem 277(47):45377–45392.

Abate et al. PNAS | January 24, 2017 | vol. 114 | no. 4 | 769

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 J
an

ua
ry

 1
, 2

02
2 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608839114/-/DCSupplemental/pnas.1608839114.sapp.pdf

